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We investigate the problem of selecting the best population from exponential family
distributions based on type-I censored data. A Bayes rule is derived and a monotone
property of the Bayes selection rule is obtained. Following that property, we propose an
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§ 1 Introduction

Consider designing and analyzing an experiment for comparing k populations m,
g, -+, k. Suppose that m items are taken from each population and observations can
be obtained from those items in time order, as for example, in a life-testing experi-
ment. It is often desirable to terminate the test from a population as soon as there is
enough statistical evidence that it is not the best population, and then this population
is eliminated from further consideration.

Assume that the random observations from population m; have a density function

f(z]6;) of the form
f(x10) = c(8)ezp{B(6)Q(x)}h(z), TeX, (1.1)

where X is the support of f(z|6) and h(z) > 0 for z € X'. Let 2 be the parameter space
for each 6;.

Let 6y) < 0y < -+ - < 6 denote the ordered values of the parameters 01,0,,---,0.
It is assumed that the exact pairing between the ordered and the unordered parameters
is unknown. The population associated with the largest value 6 is considered as the
best population. The readers are referred to Gupta and Panchapakesan (1979) for a
comprehensive understanding of selection and ranking procedures.

The function f(z|#) is assumed to have (nondecreasing) monotone likelihood ratio
with respect to . This assumption is equivalent to

(B(62) — B(61))(Q(z2) — Q(z1)) 2 0 (1.2)

for any 6y > 61, 0,,0, € Q, x5 > x1, 71,22 € X. Without loss of generality, we assume
that Q(z) is a nondecreasing function of z and B(f) is a nondecreasing function of 6.

Many exponential family distributions, such as Chi-square, Ezponential, Gamma (a,
) with one of the two parameters known, Log-normal (i, o?) with o known, Weibull(y,
B) with one of the two parameters known, have property (1.2). So our results here can
be applied to them.

In an application situation of industrial life-testing experiment, m items from each
of the k population my, - -, are independently put on test at the outset and are not
replaced on failure. Due to the time restriction, the experiment terminates at a pre-
specified time T. The failure time of an item is observable only if it fails before time
T. Otherwise the item is said to be censored at time 7". This type of time censoring is
known as the type-I censoring. The type-I censoring scheme has received much attention
in the statistical literature, see Spurrier and Wei (1980), and others. The ranking and
selection procedures based on censored data for the exponential distribution have been
considered, for example, in Berger and Kim (1985), Gupta and Liang (1993), and Huang
and Huang (1980).

In this paper, we derive a Bayes selection rule for exponential family distributions
based on type-I censored data. A monotone property of this rule is discussed and an
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early selection rule is proposed. Through this early selection rule, one can terminate the
experiment on a few populations early and possibly make the final decision before the
given time T. The approach used here is similar to that of Gupta and Liang(1993).

§2 A Bayes Selection Rule

Let T' be the censoring time. Let Xj;,1 < j < m be the type-I censored data of the
m items taken from population ;. We only observe min(X;;,T). Let N; = 370, Iix,; <n)
be the number of uncensored data up to time 7'.

Let YV;; < Y2 < --- <Yy, be the ordered values of the NV; observed data given N;.
Then (Y1, Yio, -+, Yin,, V;) have a joint probability density

1 n; 3 ' n;
f(yi, nz|91) — —ﬂ———?c’” (ei)eﬁ(ei)zjzl Q(y”)Pei (X > T)(m—m) H h(yij) (2_1)
(m — ny)! _ j=1
m! T
— i (gi)eﬂ((h)[yi—(m—ni)Q(T)]Poi (X > T)(m—nz‘) h(yi;),
(m — n;)! g I

where ¥; = (Yi1, Yi2,***, Yin), 0 S <m,yin < Yi2 < -+ < i < T and
= Q(yi) + (m — ny)Q(T). (2.2)
j=1

Let A be the sample space generated by N = (ny,m2,---,n;) and conditioned on
N=#f= = (n1,m2,- -, M%), let Yy, be the sample space generated by Y = (y1,Y2, ", Yk)-
Let 0 = (01,02,~ ,0¢) and Q = {0]0; € Q,1 < i < k} be the parameter space. Let A

- be the action space. Action % corresponds to the selection of population 7; as the best

population. For a given # € {2 and an action ¢, the associated loss function is defined by

L*(0,4) = L{6y — 6,) (2.3)

where L(r) is a nonnegatlve and nondecreasing function of z, z > 0, such that L(0) = 0.

Let g(0) = HJ =19 (8;) be the prior density over the parameter space 2. It is assumed
that f5 L(0))g(0 )d0 < 00.

A selection rule & = (01,02, --,0) is defined to be a measurable mapping from the
sample space (N, (Vz)zen) to [0,1]% such that 0 < 6;(7,7) < 1 and Y5, 6;(7,7) = 1 for
all ¥ € Y, 7 € N. The value of §;(¢,7) is the probability of selecting populatlon m; as
the best population based on the observation (7, 7).

Let R(5 g) denote the Bayes risk associated with the selection rule 5. Then by
Fubini’s Theorem we have

-2, Za 5.7) || L(0w — 0)1(,718)g(8)dbag (24)



where f(#,7|0) = [1%, f(yi, n:|6;). Now let

k
filyi,ni) = /Qf(yi,ni|9z‘)gi(9i)d9i, F(@,70) = 1] filyi, ma),
i=1
i 1i|0:) g (0s G T
9i(0ilyi, i) = f(yf%l'_ 719)( ) and  g(fly,n) = 1:[ 9i(0:lyi, ms).
Then (2.4) becomes
~ k ~ ~
RE.9) = 3 [ Y 6(57) [ L6~ 099(@15.7)0f 5. 7)dy.
nen Vw1 e

For each (7, 7), define

Ai(g, ’ﬁ) = /()L(O[k] - Qz)g(éw, ﬁ)dg, 1=1,2,---,k,

and let
A@ ) = {i1Ai(5,7) = min A;(77)}
Then a uniformly randomized Bayes rule is bc = (61, - +,0ck), where
o _[AGRI i ic AG)
%70 otherwise.

§3 A Monotonicity Property of é¢

(2.5)

(2.6)

(2.7)

For each fixed (y;, n;), g:(6i|y:, n;) = 0 if and only if g;(6;) = 0. Then g;(6;|y},n;) and
- 9(6ily;, n;) have the common support. Let D; be their common support. Consider the

likelihood ratio defined on D;, by

* * gz(gzly:a n:)
ri(0; Yi My Yis i) = — 71— — -
l( ll ‘ ’ l) gi(9i|yiani)

A simple calculation shows that for some nonnegative function W

ri(0:|y7, n3, vi, 1)
= W(y;’ n;" Ui, ni)cﬂf’"i (gi)eﬁ(f’i)[(y{*yi)-i-(nf —ni)Q(T)]{Pai (X > T)}("i—n;)

= Wl nt, gm0 [T eap(B(0)[Q() - QT Yh(a)da} ),
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from which we get the following lemma.

Lemma 3.1 Let 7;(0;|y},n},yi,n:) be defined by (8.1). Then
(a) for nt = ng, yf > yi, ri(0:ly}, i, vi, i) is a nondecreasing function of 6; in D; and
(b) for yi = yi,n} > ny, ri(6ily}, nf, vi, ni) is a nonincreasing function of 0; in D;.

The following lemma is used in the proof of lemma 3.3.

Lemma 3.2 If g(6) and h(0) are probability density functions such that g(0)/h(0) is
nondecreasing function of 6 in Q, then for any nonincreasing function f(6) of 6 in Q,

[ @n@)ae > [ 16)90)d0.

Lemma 3.3 Let A;(7,7) be defined in (2.5). For each i(1 < i < k), Ay(y,7) is
nonincreasing in y; and also in nj,j # ¢ when all the other variables are kept fized, and
nondecreasing in n; and also in y;,j # i, when all the other variables are kept fized.

Proof. We only prove that A;(7,7) is nonincreasing in y; when all the other variables
are kept fixed. The other parts can be proved in a similar way.

Define
f}i = (9'}.,...’92._1,9”1,...79k)
Q= {6:0,€Q,5=1,2,---,k,j#1i}
g = (W, u)
Y= (yla""yi—lay;aywla"W?/k)-
Then

85 7) = [ (. 16w — 09:(6:lus,m)ldd: TT 05015, ms)df"
J#i
Since for each fixed § and 7, L(6p) — 0;) is nonincreasing in 6; and by Lemma 3.1,

r:(0:lyF, n¥, v, n;) is a nondecreasing function of 6; for y7 > y;. So Lemma 3.2 implies
that

/QL(e[k] — 6;)9:(0ilyi, ni)dO; > /QL(9[k] — 0:)9:(0:ly; , ns)db;
and hence A;(7,7) > A(¥*, 7).

Now, from Lemma 3.3, we obtain a monotone property for dc in the following theo-
rem.

Theorem 3.4 For each i = 1,2,---,k, di(§, ) is nondecreasing in y; and nonin-
creasing in n;, when all the other variables are kept fizved.
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Proof. We only prove that é¢;(¥,7) is nondecreasing in y; when all other variables
are kept fixed. The monotone property of d¢ in n; can be proved in a similar way.
Use the notation in Lemma 3.3. Assume y; > y;.
If © ¢ A(9,7), then dg;(§,7) = 0. Since dg;(¥*,7) is nonnegative, 6g;(7*,7) >
6Gi (ga ﬁ’)
If i € A(y,7n), then Ay(y,7) < minjz; A;j(y, 7). Using Lemma 3.3,
A7) < M@ 7) < min Ay (§,7) < min A, (7, 7).

And hence i € A(7*,n).
To get dgi(¥*, ) > dc:i(¥, ), we still need to show
A(g*,n) C A(y,n). (3.2)
For each h € A(F*,7), An(7*,7) = Ay(g*, 7). Using Lemma 3.3,
An(7,n) < Ap(y, 1) = Ai(7, 1) < Ai(§,7) = min Ay(Y,7)

1<j<k

and hence h € A(g,7). So (3.2) is proved and dg;(7*,7) > dg;(7, 7).

84 An Early Selection Rule

In this section, we consider the following linear loss function: L(f) ~ 6;) = 6% — 6;,
the difference between the parameters of the best and the selected populations. Thus
the set A(y,n) given by (2.6) turns out to be:

Ay, n) = {1 /Oigi(()ilyi,ni)dﬁi = lrg?gck/%gj(ﬁjlyj,nj)dﬁj}. (4.1)

Similar to the proof of Lemma 3.3, we can prove the following result.

Lemma 4.1 For each fized i, E[6;|y;,n;] is increasing in y; and decreasing in n;.

Now, we will use Lemma 4.1 to derive an early selection rule.

At time ¢, 0 <t < T, let N;(t) denote the number of uncensored data from population
m; upto t. That is, N;(t) = #{X;; : 1 <7 <m, X;; < t}. Also,let ¥;; < Vi <--- <
Yin,t) denote observed uncensored data given N;(t). At time ¢, we can make early
decision as follows:

Declare population 7; as a non-best population and exclude it from further experiment
if there exists some population 7, such that

Nip(t) <m and E[bn|yn(t),m] > E6ily:(t,T), Ni(t)] (4.2q)

or
Nh(t) =m and E[0h|yh(t),m] > E[Oilyi(t,T), Nz(f)] (42b)
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where

Nu(t)
yn(t) = Z Q(ynj) + (m — Np(t))Q(2) (4.3a)

and (O
yi(t,T) = Z Qi) + (m = N;(#))Q(T). (4.3b)

Let S(t) denote the indices of the contending populations for the best at time ¢. That
is,
S(t) ={i: Na(t) < (=)m and E[:|y:(t,T), Ni(t)] > (=) ElOnlyn(t), m], b # i} (4.4)
The following lemma shows that for any ¢, 0 < t < T, S(t) is not empty.

Lemma 4.2 For any 0 < t < T, the set S(t) defined by (4.4) is not empty.
Proof. Let

S'(8) = {i + E[Bulus(t), Ni(t)) = max, Blolun(t), Na(0)]}.
Then S'(t) is not empty. We prove that S’(t) is a subset of S(t). For ¢ € S'(t) and any
h # 1,
if Np(t) < m, then

E0:|y;(t, T), Ni(t)] = El0:lys(¢), Ni(t)] = E[bn|yn(t), Na(t)] > E[Onlyn(t), m];
if Ny (£) = m, then

E0;]yi(t, T), Ni(t)] > E{0:ly(t), Ni(t)] = E[blyn(t), Na(t)] = E[Onlyn(t), m].
In either situation, we see that § € S(¢). Hence S'(t) C S(t).

Now, the experiment terminates as soon as there is a time £, 0 < ¢t < T, such that
|S(t)| = 1 and in this case, we select the population with its index in S(¢) as the best
population. Otherwise, the experiment goes on until time 7'. Let

S(T) = {i: E[0ily;, Nil = max E[0;]y;, Njl}, (4.5)
jes(T-)
where S(T7), which is not empty by Lemma 4.2, denotes the set of the indices of those
populations having not been eliminated before time 7". Then, a uniformly randomized
selection is made from S(T’).
i From the above description, we see that the early selection rule can possibly make

a final selection earlier than the termination time T'. Denote this early selection rule by
0t = (651, +,0%;). Then, we have the following theorem.
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Theorem 4.3 Under the loss function L(6), g*Gz =b6i(§,7) foralll <i<k,jE Y,
and 1 € N, where 6¢;(§, 1) is defined by (4.1) and (2.7).

Let t; = inf{t: |S(t)] =1,0 <t < T} AT, where a A b= min(a,b). Then Theorem
4.3 is equivalent to the following theorem.

Theorem 4.4 S(t;) = A(g,n) for all (§,7).

Proof. Case 1. If t; < T, then |S(¢1)| = 1. Without loss of generality, we let 7, be
the population with index in the set S(¢;). Since A(y,7) contains at least one element, it
suffices to show that i ¢ A(y,n) for all ¢ # k. Since ¢ ¢ S(t1), it means that population
m; is eliminated at some prior time, say to, That is, at time ¢, for some 7, either

Ni(te) <m and E[fnlys(te), m] > E[6;]yi(to, T), Ni(to)] (4.6a)
or
Nh(to) =m and E[9h|yh(t0),m] > E[9i|yi(t0,T), Ni(to)]. (46b)

Now, note that N;(t) is a nondecreasing function of ¢ € (0, 7] and N;(t) < m. Also, by
(4.3a) and (4.3b), yx(t) is nondecreasing in t and y;(t, T') is nonincreasing in t. Especially,
we have

Ny, = Hy(T) <m, Ni(t) < Ni(T)=N;, yi(to,T) > i

and
Uh = > yn(to) if Ni(to) <m,
h = yh(tO) lf Nh(to) =m.

Thus, when Nj(ty) = m, then N, = m. Then by Lemma 4.1 and (4.6b),

E[9h|yh,Nh] = E[0h|yh(to),m]
> El8ilyi(te, T), Ni(to)]
> E[6;]yi, Ni.

When Ni(to) < m, then y, > yn(to) and Ny < m, Therefore, by Lemma 4.1 and
(4.6a), '

E[0n|yn, N E[6n]yn(to), m]
E0;]yi(to, T), Ni(to)]

>
> El6:ly;, Ni].
In either situation, we see that i ¢ A(y,n).

Case 2. If t; = T, we need to prove that
(a) i ¢ S(T) implies ¢ ¢ A(y,n), and (b) i € S(T') implies i € A(Y, n).



We prove (a) first. Suppose ¢ ¢ S(T'). Then, 7; is eliminated at a time ¢, < T by
some other mp,.

If ty < T, this reduces to the situation discussed in Case 1.

If to = T, then by (4.5), E[0nlyn, Ni] > E[6;|y:, N;]. Therefore, by the definition of
A7), i ¢ AG,7).

For (b), we have firstly A(g,7) C S(T) C S(T~) by (a) and definition of S(T") and
S(T-). Ifi € S(T-),

E[0;|y;, Ny max E[0;ly;, N;]

JES(T~
jfel}%) E[0;]y;, Nj]

max  F\0;ly;, N;|.
max B[ty N

Y

Vv

This means ¢ € A(y,7). The proof now is completed.

§ 5 An Example

We use the simulated data to illustrate how the early selection rule works. Suppose
that we have five populations m;, ¢ = 1, 2, 3, 4, 5. The lifetime of the population =;
follows a Weibull distribution with density

2x x
f(zl6;) = bgexp[—(—ejf], z > 0.
The unknown parameters 6y, - - -, 5 are simulated independently from U(0,1). That is,
61, - -+, 05 are independent and identically distributed with U(0,1). Ten observations

are simulated independently from each population. The data are listed in the following
table.

m T2 3 T4 s
0.10 0.06 0.57 0.80 0.67
033 0.09 056 1.19 0.90
050 0.05 0.61 0.70 1.02
0.17 0.04 0.75 0.36 0.64
0.50 0.02 0.68 0.88 0.74
0.13 0.02 0.22 0.52 0.90
0.13 0.07 047 0.71 0.94
0.28 0.10 0.45 0.77 0.86
0.36 0.07 0.69 0.52 0.59
0.10 0.07 1.01 0.24 0.90




We want to select a population with the largest mean lifetime. Since the mean lifetime
of the population 7; is proportional to ;, what we need to do is to find a population
with the parameter . Suppose that the type-I censoring scheme is planned before the
life-testing experiment and the censoring time is set to be T' = 1. Therefore we obtain
the following table.

m P m3 T4 s

E[fily;,m;] 0.14 003 031 034 0.83

According to the selection rule bc, at the end of the experiment, we select 75 as the
best population. )

However, if the early selection rule d7 is applied, we can make the selection before
T = 1 and end the experiment earlier. According to the selection rule é%, at time ¢,
0 <t < T =1, exclude the population 7; as a non-best population and remove it from
further experiment if there exists some population m, such that

Nip(t) <m and E[0nlyn(t), m] > E[6;|y:(t, T), Ni(t))

or
Niy(t) =m and E[0n|yn(t), m] > E[6;|y:(t,T), Ni(t)].

According to this rule, at ¢; = 0.88, all the populations 7, 72, 3 and 74 are removed
from the experiment and the population 75 is selected as the best. So the experiment
can be ended at ¢t; = 0.88 and the time saved is 0.12 or 12%.
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